
what is within

Within is a system that utilizes a post and beam structure for defining spaces within an office environment.

WithIn ${ }^{\text {rw }}$ creates an independent framework for both permanent and transitional spaces, allowing to adjust to new work behaviors and patterns. Teknion's extensive Architectural Interiors program makes it possible to configure workspaces with the dimensions, function, technology and visual/acoustic privacy required for an array future possibilities.

what is within

The following examples illustrate a few practical approaches to create various types of spaces with a focus on specific use cases that are supported by the options offered.

WithIn functions as a space division system that utilizes a post and beam framework as its primary element for defining a space. With a high degree of options to outfit the structural framework the function of a space can be adapted to a broad range of use cases.

collaborative

The WithIn system can be used to create spaces that are flexible and adaptive in nature. Utilizing sliding screens can designate a zone for collaboration and can be opened or closed to adjust the amount of visual privacy. Integrating worksurface can also add a casual feel while providing a space for both work and conversation.

private

When a space that demands more privacy infills can be used to create permanent walls that can be placed to serve as a visual block, while glass infills can be strategically added to allow light and visibility while defining the space.

lounge

The framework of Within can be used to define a space in an open floor plan that facilitates a lounge environment. Outfitting the layout with soft seating and tables completes the space for a more relaxed experience.

The following describes some core concepts to specifying with the WithIn program.

WithIn consists of the following five component groups. The frame is the most foundational component as it sets the size and structure for all WithIn layouts. consists Each of the component groups have a unique function and multiple options for each to suit many applications.

(1) Frame

Uses a post and beam as its main structural components while providing a support structure for all other elements of the Within system.

(2) Sliding Screens

Provides adaptable visual privacy while adding a soft natural felt texture to a space.
(3) Infills

Used to build walls that are fixed within the structural frame and are available in a variety of finish options, including solid and glass fascias.
(4) Worksurfaces

Provides a bar height worksurface at a $42^{\prime \prime}$ height that supports the use of technology with outlets and wire routing cut out options.
(5) Electrical

Includes power and data outlet options that can be incorporated into worksurfaces and select infills. Lighting can also be added to a space by adding task lights to select infills.

what is within

office placement

Below describes two core planning concepts in relation to WithIn and the open office.

centralized planning

WithIn can be placed amongst furniture and workstations while acting as its own space division element. When centrally planning consider keeping an open side or adding a glass infill to maintain light transmission. Consider a screen or solid infill to increase visual privacy.

perimeter planning

WithIn can be placed along exterior and interior building walls. When planning against windows consider Within with an open side or glass infills to maintain light transmission.

When planning near drywall consider WithIn with a solid infill.

initial considerations

The following describes the planning considerations for the WithIn program.

When creating a WithIn layout the following site conditions should be considered

- The finish floor cannot deviates more than 1-3/4" from level over the width of a WithIn layout
- The layout must maintain a minimum distance of 4 " from any wall or fixed structure for installation
- The layout must maintain a minimum distance of $6^{\prime \prime}$ above the layout to ensure adequate space for installation
- See Glass Infill section for specific details on achieving the full range of adjustment

The maximum leveling range is $1-3 / 4$ " for a single layout.
If the floor level deviates greater then these limits multiple Within layouts can be used to reset the leveling range and accommodate the floor deviation as long as no single layout has a floor that deviates greater than 1-3/4" over the course of the layout width.
The following illustrates how to plan in a space the has a floor that deviates greater than 1-3/4":

what is within

how to specify within

Step 1 - Footprint

First review site drawings and coordinate design with building structural elements such as walls, glass columns, electrical feeds, building architecture and other furnishings within a space.

Step 2 - Frame
Determine the footprint of the WithIn layout that will fit the space and will be proportionally appropriate for the intended infills and furnishings.

Step 3 - Worksurfaces

Determine the functional intent of each space and place any worksurfaces in the framework if desired.

Step 4 - Infills
Determine what types of infills will be used for each of the post to post openings on each side of the framework and determine the appropriate infill and material for each location.

Step 5 - Electrics

Review all infills and worksurface elements and determine if outlets and lighting will be required. Confirm if power can be fed from the floor or ceiling and determine cable lengths required.

application guide

application guide

\qquad
FRAMES .
SCREENS 75
WORKSURFACES 83
LIGHTING, ELECTRICS \& COMMUNICATIONS 91

application guide

frames product map

F J S P S
Structural Post
F J S P W
Floor Weldment
F J S B K
Structural Beam Kit

F J S P C Structural Post Top Cap F J S B C Structural Beam Cover

application guide

infill, wall fascias product map

FJFPRTS 2 Portrait Fabric Wrapped Fascia -
Tri-Segmented, Level 2

F J F P R T S 3 Portrait Fabric Wrapped Fascia -
Tri-Segmented, Level 3

F J F P R T W M Portrait Fabric
Wrapped Fascia - Task
Wall Monolithic,
Level 1

F J F P R T W 2 Portrait Fabric
Wrapped Fascia - Task
Wall, Level 2

F J F P R T W 3 Portrait Fabric
Wrapped Fascia - Task
Wall, Level 3

F J F P A M N Portrait Acoustic Tackable Fascia Monolithic

F J F P A T S 2 Portrait Acoustic Tackable Fascia - TriSegmented, Level 2

F J F P G C S Portrait Glass Fascia

- Single Centered, Square Corner

F J F P M P M N Portrait Micro
Perforated Metal
Acoustic Fascia -
Monolithic

Portrait

F J F P A M S 2 Portrait Acoustic Tackable Fascia - MidSplit, Level 2

F J FPYT W 2 Portrait Framed
Backpainted Glass
Markerboard - Task
Wall, Level 2

F J F P A T $\underset{\text { Tackable Fascia - Task }}{\text { Ta }}$ Wall, Level 2

F J F P X T W 2 Portrait Frameless Backpainted Glass Markerboard Task Wall, Level 2

application guide

infill, wall fascias product map

F J F L M S M Landscape Solid
Fascia - Mid-Split
Monolithic, Level 1

F J F L T W M Landscape Solid Fascia - Task Wall Monolithic, Level 1

F J F L M S 2 Landscape Solid Fascia - Mid-Split, Level 2

F J F L T S M Landscape Solid Fascia - Tri-Segmented Monolithic, Level 1

F J F L T S 2 Landscape Solid Fascia - Tri-Segmented, Level 2

F J F L T W 2 Landscape Solid Fascia - Task Wall, Level 2

F J F L T W 3 Landscape Solid Fascia - Task Wall, Level 3

F J F L B $\quad \underset{\substack{\text { Landscape Base } \\ \text { Fascia }}}{\text { and }}$

infill, wall fascias product map

FJ FLRTS 2 Landscape Fabric Wrapped Fascia -
Tri-Segmented, Level 2

F J F L R T S 3 Landscape Fabric
 Wrapped Fascia - Tri-
 Segmented, Level 3

F J F L R T W 2 Landscape Fabric Wrapped Fascia - Task Wall, Level 2

F J F L R T W 3 Landscape Fabric Wrapped Fascia - Task Wall, Level 3

F J F L A T W 2 Landscape
F J F L A T W 2 Landscape Fascia - Task Wall, Level 2

F J F L A T S 2 Landscape
Acoustic Tackable Fascia - Tri-
Segmented, Level 2

F J F L A M S 2 Landscape Acoustic Tackable Fascia - Mid-Split, Level 2

F J F L X T W 2 Landscape
Frameless Backpainted
Glass Markerboard -
Task Wall, Level 2

application guide

infill, wall fascias product map
F JF P A K

F J H C F Glass Infill Horizontal Ceiling Frame

F J H B F $\quad \begin{aligned} & \text { Glass Infill Horizontal } \\ & \text { Base Frame }\end{aligned}$
F J H G A
Glass Infill - 10mm Thickness

F J H G B	Glass Infill -12 mm Thickness	F J H C P	Glass Infill Connector, Clear Plastic	F J H C T	Glass Infill Connector, Tape

F J H W S Glass Infill Wall Start

F C A K Activator Kit

application guide

screens product map

worksurfaces product map

F J T W F K Worksurface Framework Kit

F J T L F P $\begin{aligned} & \text { Fascia Package for Bar } \\ & \text { Height Worksurface }\end{aligned}$

F J T W S F Bar Height
Worksurface

F J T W D G Worksurface Ring Grommet

application guide

lighting, electrics \& communications product map

E L S F J Light Switch

E P D M C F J Power Data
Vertical Module Communication

E P D H S F J Power Data Horizontal Module Single

E P D H C F J Power Data
Horizontal Module Communication

E P D M S F J Power Data Vertical Module - Single

E P D M D F J $\begin{gathered}\text { Power Data Vertical } \\ \text { Module - Double }\end{gathered}$

Horizontal Module -

Double
E P D H D F J Power Data

E P D S C F J Power Data Starter
Cable

E P D C H F J Power Data
Connecting Harness

EPD D B F J Power Data Four-Way Splitter

ELP FF J Light Power Feed

ELW M G F J Landscape Light
Wire Management

application guide

accessories product map

F J I T Installation Tools

Vertical Post Leveling Jig Kit

Concrete
Repair Kit

Half Vertical, Half Horizontal Installation Jig Kit

Glass Infill Installation Jig

F J I N Connection Hardware
Vertical Post

Concrete
Anchor and
Bolt Kit

frames

frames

FRAME BASICS 30
PLANNING FRAME LAYOUTS 32
PLANNING WITH POST \& BEAM CONNECTIONS 35
PLANNING FOR FRAME ANCHORING 36

application guide

frame basics

The frame consists of the following discrete elements.

Structural Post (FJSPS)

Finishes: Accent, Mica, Foundation (excludes textured).

Structural Post (FJSPS)

- Includes:
- Post
- Cover
- Floor Weldment
- Height: 96"
- Type:
- Inline
- Two-Way
- Three-Way
- Four-Way
- Optional Worksurface Attachment Prep
- Optional Electrical Cutout: $35^{\prime \prime}$ and/or 28"
- Cover Handed:
- Two-Way Left or Right
- Non-handed
- Worksurface Handed:
- Left,
- Right or Center,
- Left and Right
- Anchors and Installation Tools sold separately

Floor Weldment (FJSPW)

- Includes: Standard Weldment for Floor Anchoring (S)

Structural Beam Kit (FJSBK)

- Includes: Beam
- Length: 40" - 144-7/8" ($1 / 8^{\text {" increments) }}$
- Length determined by worksurface when applicable

Structural Post Top Cap (FJSPC)

- Includes: Cap

Structural Beam Cover (FJSBC)

- Includes: Cover
- Length: 40" - 144-7/8" (1/8" increments)
- Length determined by beam

The frame consists of the following discrete elements.

Available Accessories:

Vertical Post Leveling Jig Kit

Half Vertical,
Half Horizontal Installation Jig Kit
Installation Tools (FJIT)
Options available:

- Vertical Post Leveling Jig Kit (LJ)
- Concrete Repair Kit (CR)
- Half-Vertical/Half-Horizontal Installation Jig Kit (HJ)
- Glass Infill Installation Jig (GJ)

Raised Floor Kit

Vertical Post Drilling Jig

Connection Hardware (FJIN)

Options available:

- Concrete Anchor and Bolt Kit (AB)
- Vertical Post Carpet Spacer (CS)
- Raised Floor Kit (RF)
- Vertical Post Drilling Jig (DJ)

application guide
 planning frame layouts

The following illustrates possible configuration when building a frame.

Every frame must have the following minimum number of posts and beams to build a frame for a WithIn layout:

- $4 \times$ posts
$-4 x$ beams
When creating larger configurations posts and beams can be shared.
The example below show a few examples.
- Shared posts are highlighted in Red
- Shared beams are highlighted in Blue

$8 \times$ Posts
$10 \times$ Beams

$$
9 \times \text { Posts }
$$

$12 \times$ Beams

The following illustrates possible configuration when building a frame with the posts and beams.

Frame layouts are built using squares and rectangles. Different sizes squares and rectangles can be combined to create larger layouts.

Auxiliary posts can be added to allow worksurfaces that are shorter then the beam they are placed under (Example 1) or be used when combining spaces that have a different widths (Example 2). Adding a post splits the beams into two separate sections. No beam section can be less then 40 "in length.

Example 1

Example 2

application guide

planning frame layouts (continued)

The following illustrates possible configuration when building a frame with the posts and beams.

$\sqrt{ }$		The maximum size of any post to post opening is $144-7 / 8^{\prime \prime} \times 144-7 / 8^{\prime \prime}$.
		A layout must have an enclosed space forming a square or rectangle.
		If a worksurface is shorter in length then the beam it is placed under an auxiliary post is required.
$\sqrt{ }$		If a smaller area is being placed adjacent to another area an auxiliary post can be used to split the beam in to two sections.
		Beams must create closed squares or rectangles. No run of beams can surpass 144-7/8" without a perpendicular cross beam.

planning with post $\&$ beam connections

The following describes the various post connection types that can be used when creating frame layouts.

Inline - Non-Handed
Post front cover is always placed on one of the two sides perpendicular to the beams.

Two-Way - Right Hand

Post front cover is always on the outside perimeter oriented on the right side when facing the corner.

Two-Way - Left Hand
Post front cover side is always on outside perimeter oriented on the left side when facing the corner.

Four-Way - Non-handed

Post cover can be placed to align with any of the four beam directions.

Cover (FJSBC) and Post Top Cap (FJSPC)
Beam and Post Top Cap are optional.

application guide

planning for frame anchoring

The following describes two options for anchoring the frame to the floor.

All WithIn structures use one of the following anchoring methods for each independent layout configuration.

surface mounted

The following depicts the standard anchorage method for the WithIn system. The Structural Post (FJSPS) and Floor Weldment (FJSPW) are sold separately. Anchoring is to be completed directly to the concrete floor. Use the Connection Hardware (FJIN) option (CS) Carpet Spacer where applicable.

Installation Tools / Connection Hardware not included and can be ordered separately:

- Connection Hardware (FJIN) option (AB) Concrete Anchor \& Bolt Kit $1 \times$ per Post
- Use $1 \times$ Connection Hardware (FJIN) option (CS) Carpet Spacer per Post to mark the Structural Post Kits final install location prior to the installation of the carpet when applicable
- Use 1 x Connection Hardware (FJIN) option (DJ) Vertical Post Drilling Jig for every six Posts ordered or per floor layout if less then six are required
- Use 1 x Installation Tools (FJIT) option (LJ) Vertical Post Leveling Jig Kit for every four posts ordered
- Use $1 \times$ Installation Tools (FJIT) option (CR) Concrete Repair Kit should be included per floor layout
- Include 1x Installation Tools (FJIT) option (HJ) Half Vertical Half Horizontal Install Jig per layout that include wall infills
- Include 2x Installation Tools (FJIT) option (GJ) Glass Infill Installation Jig per layout that include glass infills

planning for frame anchoring (continued)

raised floor mounted

When planning to install Within on a raised floor the placement of the Within layout should been done with reference to the raised floor tile location plans to ensure the post can be placed on a tile and not directly over a raised floor pedestals.
The following depicts the optional anchoring method for the Structural Post (FJSPS) and Floor Weldment (FJSPW) for raised floor applications.
The Connection Hardware (FJIN) option Raised Floor Kit (RF) package needs to be specified separately 1x per Post. It connects to the steel anchor plate that is included with the Post.

- Installation hardware is not included
- Anchoring of all posts is required
- Use 1 x Connection Hardware (FJIN) option (CS) Carpet Spacer per Post to mark the Structural Post Kits final install location prior to the installation of the carpet when applicable
- Use $1 \times$ Connection Hardware (FJIN) option (DJ) Vertical Post Drilling Jig for every six posts ordered or per floor layout if less then six are required
- Use $1 \times$ Installation Tools (FJIT) option (LJ) Vertical Post Leveling Jig Kit for every four posts ordered
- Include 1x Installation Tools (FJIT) option (HJ) Half Vertical Half Horizontal Install Jig per layout that include wall infills
- Include $2 \times$ Installation Tools (FJIT) option (GJ) Glass Infill Installation Jig per layout that include glass infills

infill, wall fascias

infill, wall fascias

INFILL, WALL FASCIAS OVERVIEW 40
PORTRAIT MONOLITHIC BASICS 42
PORTRAIT MID-SPLIT BASICS 43
PORTRAIT BI-SEGMENTED BASICS 44
PORTRAIT TRI-SEGMENTED BASICS 45
PORTRAIT TASK WALL BASICS 46
LANDSCAPE MID-SPLIT BASICS 48
LANDSCAPE TRI-SEGMENTED BASICS. 49
LANDSCAPE TASK WALL BASICS 50
INFILL, WALL FASCIAS ELEVATIONS OVERVIEW 52
SPECIFYING WALL INFILL MATERIALS \& WIDTHS 53
INFILL, WALL FASCIAS FABRIC FINISHES 54
PLANNING WITH INFILL, WALL FASCIAS WIDTHS 56
PLANNING WITH INFILL, WALL FASCIAS POST \& BEAMS 56
WALL INFILL FRAME COMPONENTS OVERVIEW 57
FRAME KIT \& COMPONENTS INFILL, WALL FASCIAS BASICS 59
PLANNING WITH INFILL, WALL FASCIAS FRAME COMPONENTS 60
PLANNING WITH VERTICAL POSTS 62
INFILL, WALL FASCIAS VERTICAL POST SELECTOR 63
PLANNING WITH HORIZONTAL POSTS 64
INFILL, WALL FASCIAS GLASS BASICS 65
PLANNING WITH INFILL, WALL FASCIAS WITH GLASS ELEVATIONS 66

application guide

infill, wall fascias overview
Tri-Segmented
Full Glass Walls Types

portrait monolithic basics

The portrait monolithic infill fascias include the following options.

Finishes: Fascia Laminates, Flintwood
Fabrics: Architectural, COM

Portrait Solid Fascia - Monolithic (FJFPMN)

- Height: 92"
- Width: 12" - 48" (1/8" increments)
- Electrical Cutouts:
- Vertical - Single, Double 15" AFF
- Horizontal - Single, Double 35" AFF

Portrait Fabric Wrapped FasciaMonolithic (FJFPRMN)

- Height: 92"
- Width: 12 " $-48^{\prime \prime}$ (1/8" increments)
- Electrical Cutouts:
- Vertical - Single, Double 15" AFF
- Horizontal - Single, Double 35" AFF

Portrait Acoustic Tackable Fascia Monolithic (FJFPAMN)

- Height: 92"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)

Portrait Micro Perforated Metal Acoustic Fascia - Monolithic (FJFPMPMN)

- Height: 92"
- Width: 12 " $-44^{\prime \prime}$ (1/8" increments)

The portrait mid-split infill fascias include the following options.

Finishes: Fascia Laminates, Flintwood
Fabrics: Architectural, COM

Portrait Solid Fascia - Mid-Split
Monolithic, Level 1 (FJFPMSM)

- Height: 48 "
- Width: $12^{\prime \prime}-48^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)
- Electrical Cutouts:
- Vertical - Single, Double 15" AFF
- Horizontal - Single, Double 35" AFF

Portrait Fabric Wrapped Fascia - MidSplit, Level 2 (FJFPRMS2)

- Height: 44 "
- Width: 12 " $-48^{\prime \prime}$ (1/8" increments)

Portrait Solid Fascia - Mid-Split, Level 2 (FJFPMS2)

- Height: 44"
- Width: 12 " -48 " ($1 / 8^{\prime \prime}$ increments)

Portrait Acoustic Tackable Fascia -Mid-Split, Level 2 (FJFPAMS2)

- Height: 44"
- Width: 12" - 48" (1/8" increments)

Portrait Fabric Wrapped Fascia - Mid Split Monolithic, Level 1 (FJFPRMSM)

- Height: 48"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)
- Electrical Cutouts:
- Vertical - Single, Double 15" AFF
- Horizontal - Single, Double 35" AFF

application guide

portrait bi-segmented basics

The portrait bi-segmented infill fascias include the following options.

Finishes: Fascia Laminates, Flintwood
Fabrics: Architectural, COM

Portrait Solid Fascia -Bi-Segmented Monolithic, Level 1 (FJFPBSM)

- Height: 62"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)
- Electrical Cutouts:
- Vertical - Single, Double 15" AFF
- Horizontal - Single, Double 35" AFF

Portrait Solid Fascia -Bi-Segmented, Level 2 (FJFPBS2)

- Height: 30"
- Width: 12 " $-48^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)

Portrait Fabric Wrapped Fascia -Bi-Segmented Monolithic, Level 1 (FJFPRBSM)

- Height: 62"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)
- Electrical Cutouts:
- Vertical - Single, Double 15" AFF
- Horizontal - Single, Double 35" AFF

Portrait Fabric Wrapped Fascia -Bi-Segmented, Level 2 (FJFPRBS2)

- Height: 30"
-Width: 12 " $-48^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)

portrait tri-segmented basics

The portrait tri-segmented infill fascias include the following options.

Finishes: Fascia Laminates, Flintwood
Fabrics: Architectural, COM

Portrait Solid Fascia -
Tri-Segmented Monolithic, Level 1 (FJFPTSM)

- Height: 32"
- Width: 12 " - 48"(1/8" increments)
- Electrical Cutouts:
- Vertical - Single, Double 15" AFF

Portrait Fabric Wrapped Fascia -
Tri-Segmented Monolithic, Level 1 (FJFPRTSM)

- Height: 32"
- Width: 12 " $-48^{\prime \prime}$ (1/8" increments)
- Electrical Cutouts:
- Vertical - Single, Double 15" AFF

Portrait Solid Fascia -
Tri-Segmented, Level 2 (FJFPTS2)

- Height: 30"
- Width: 12 " $-48^{\prime \prime}$ (1/8" increments)
- Electrical Cutouts:
- Horizontal - Single, Double 35" AFF

Portrait Fabric Wrapped

Fascia - Tri-Segmented, Level 2
(FJFPRTS2)

- Height: 30"
- Width: 12 " - 48"(1/8" increments)
- Electrical Cutouts:
- Horizontal - Single, Double 35" AFF

Portrait Solid Fascia -
Tri-Segmented, Level 3 (FJFPTS3)

- Height: 30"
- Width: 12" - 48" (1/8" increments)

Portrait Fabric Wrapped
Fascia - Tri-Segmented, Level 3
(FJFPRTS3)

- Height: 30"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)

Portrait Acoustic Tackable
Fascia- Tri-Segmented, Level 2 (FJFPATS2)

- Height: 30"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)

application guide

portrait task wall basics

The portrait task wall infill fascias include the following options.

Finishes: Fascia Laminates, Flintwood
Fabrics: Architectural, COM

Portrait Solid Fascia - Task Wall
Monolithic, Level 1 (FJFPTWM)

- Height: 32"
- Width: 12 " -48 "(1/8" increments)
- Electrical Cutouts:
- Vertical Single, Double 15"AFF

Portrait Fabric Wrapped Fascia - Task Wall Monolithic, Level 1 (FJFPRTWM)

- Height: 32"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)
- Electrical Cutouts:
- Vertical Single, Double 15"AFF

Portrait Solid Fascia - Task Wall, Level 2 (FJFPTW2)

- Height: 48
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)
- Electrical Cutouts:
- Horizontal Single, Double 35"AFF

Portrait Fabric Wrapped Fascia -
Task Wall, Level 2 (FJFPRTW2)

- Height: 48
- Width: 12 " - $48^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)
- Electrical Cutouts:
- Horizontal Single, Double 35"AFF

Portrait Solid Fascia - Task Wall, Level 3 (FJFPTW3)

- Height: 12"
- Width: 12 " $-48^{\prime \prime}$ (1/8" increments)

Portrait Fabric Wrapped Fascia -
Task Wall, Level 3 (FJFPRTW3)

- Height: 12"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)

The portrait task wall infill fascias include the following options.

Finishes: Select Backpainted Glass Colors Select Paint Colors
Fabrics: Architectural, COM

Portrait Acoustic Tackable Fascia -
Task Wall, Level 2 (FJFPATW2)

- Height: 48"
- Width: 12 " $-48^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)

Portrait Framed Backpainted Glass Markerboard - Task Wall, Level 2 (FJFPYTW2)

- Height: 48"
- Width: 12 " $-48^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)

Portrait Frameless Backpainted Glass Markerboard - Task Wall, Level 2 (FJFPXTW2)

- Height: 48"
- Width: 12 " - 48" (1/8" increments)

application guide

landscape mid-split basics

The landscape mid-split infill fascias include the following options.

Finishes: Fascia Laminates, Flintwood
Fabrics: Panel, COM

Landscape Solid Fascia - Mid-Split Monolithic, Level 1 (FJFLMSM)

- Height: 48"
- Width: 12" - 120" (1/8" increments)
- Electrical Cutouts:
- Vertical Single, Double 15" AFF
- Horizontal Single, Double 35" AFF

Landscape Fabric Wrapped Fascia - Mid Split Monolithic, Level 1 (FJFLRMSM)

- Height: 48"
- Width: $12^{\prime \prime}-120^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)
- Electrical Cutouts:
- Vertical Single, Double 15" AFF
- Horizontal Single, Double 35" AFF

Landscape Solid Fascia - Mid-Split, Level 2 (FJFLMS2)

- Height: 44"
- Width: $12^{\prime \prime}-120^{\prime \prime}\left(1 / 8^{\prime \prime}\right.$ increments)

Landscape Fabric Wrapped Fascia -Mid-Split, Level 2 (FJFLRMS2)

- Height: 44 "
- Width: 12 " -120 " ($1 / 8^{\prime \prime}$ increments)

Landscape Acoustic Tackable Fascia -Mid-Split, Level 2 (FJFLAMS2)

- Height: 44"
- Width: 12" -120 " (1/8" increments)

The landscape tri-segmented infill fascias include the following options.

Finishes: Fascia Laminates, Flintwood
Fabrics: Panel, COM

Landscape Solid Fascia -
Tri-Segmented Monolithic, Level 1 (FJFLTSM)

- Height: 32"
- Width: 12 " - 120"(1/8" increments)
- Electrical Cutouts:
- Vertical Single, Double 15" AFF

Landscape Fabric Wrapped Fascia -Tri-Segmented Monolithic, Level 1 (FJFLRTSM)

- Height: 32"
-Width: 12 " -120 " ($1 / 8^{\prime \prime}$ increments)
- Electrical Cutouts:
- Vertical Single, Double 15" AFF

Landscape Solid Fascia -
Tri-Segmented, Level 2 (FJFLTS2)

- Height: 30"
- Width: 12 " -120 " ($1 / 8^{\prime \prime}$ increments)
- Electrical Cutouts:
- Horizontal Single, Double 35" AFF

Landscape Fabric Wrapped Fascia -Tri-Segmented, Level 2 (FJFLRTS2)

- Height: 30"
- Width: 12" - 120"(1/8" increments)
- Electrical Cutouts:
- Horizontal Single, Double 35" AFF

Landscape Solid Fascia -
Tri-Segmented, Level 3 (FJFLTS3)

- Height: 30"
- Width: $12^{\prime \prime}-120^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)

Landscape Fabric Wrapped Fascia -Tri-Segmented, Level 3
(FJFLRTS3)

- Height: 30"
-Width: 12" - 120" (1/8" increments)

Landscape Acoustic Tackable Fascia- Tri-Segmented, Level 2 (FJFLATS2)

- Height: 30"
- Width: 12 " - 120" (1/8" increments)

application guide

landscape task wall basics

The landscape task wall infill fascias include the following options.

Finishes: Fascia Laminates, Flintwood
Fabrics: Panel, COM

Landscape Solid Fascia - Task Wall Monolithic, Level 1 (FJFLTWM)

- Height: 32"
- Width: 12 " -120 "(1/8" increments)
- Electrical Cutouts:
- Vertical Single, Double 15" AFF

Landscape Fabric Wrapped Fascia - Task Wall Monolithic, Level 1 (FJFLRTWM)

- Height: 32"
- Width: 12" - 120" (1/8" increments)
- Electrical Cutouts:
- Vertical Single, Double 15" AFF

Landscape Solid Fascia - Task Wall, Level 2 (FJFLTW2)

- Height: 48"
- Width: 12 " -120 " ($1 / 8^{\prime \prime}$ increments)
- Electrical Cutouts:
- Horizontal Single, Double 35" AFF

Landscape Fabric Wrapped Fascia Task Wall, Level 2 (FJFLRTW2)

- Height: 48"
-Width: 12 " -120 " $1 / 8^{\prime \prime}$ increments)
- Electrical Cutouts:
- Horizontal Single, Double 35"AFF

Landscape Solid Fascia - Task Wall, Level 3 (FJFLTW3)

- Height: 12"
-Width: $12^{\prime \prime}-120$ " ($1 / 8^{\prime \prime}$ increments)

Landscape Fabric Wrapped Fascia Task Wall, Level 3 (FJFLRTW3)

- Height: 12"
- Width: $12^{\prime \prime}-120^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)

landscape task wall basics (continued)

The landscape task wall infill fascias include the following options.

Finishes: Select Backpainted Glass Color
Select Paint Colors
Fabrics: Panel, COM

Landscape Acoustic Tackable Fascia Task Wall, Level 2 (FJFLATW2)

- Height: 48"
-Width: $12^{\prime \prime}-120$ " (1/8" increments)

Landscape Framed Backpainted Glass Markerboard - Task Wall, Level 2 (FJFLYTW2)

- Height: 48"
- Width: $12^{\prime \prime}-118^{\prime \prime}$ (1/8" increments)

Landscape Frameless Backpainted Glass Markerboard - Task Wall, Level 2 (FJFLXTW2)

- Height: 48"
- Width: $12^{\prime \prime}-96^{\prime \prime}$ (1/8" increments)

application guide
 infills, wall fascias elevations overview

The chart illustrates the datums for the various infills options for portrait and landscape.

portrait

landscape

Tri-Segmented

specifying wall infill materials \& widths

The chart outlines the material options and size limitations for each fascia.
portrait

G1	Glass - Portrait
MN	Monolithic
MSM	Mid-Split - Monolithic
MS2	Mid-Split - Ivl 2
BSM	Bi-Segmented - Monolithic
BS2	Bi-Segmented - Iv1 2
TSM	Tri-segmented - Monolithic
TS2	Tri-segmented - lv1 2
TS3	Tri-Segmented - lvl 3
TWM	Task Wall - Monolithic
TW2	Task Wall - lv1 2
TW3	Task Wall - lvl 3

Full

Monolithic

Mid-Split

Bi- Segmented

Tri- Segmented

Task Wall

	G1	MN	MSM	MS2	BSM	BS2	TSM	TS2	TS3	TWM	TW2	TW3
Glass	12-48"	N/A	N/A	12-48"	N/A	12-48"	N/A	12-48"	12-48"	N/A	12-48"	12-48"
Solid	N/A	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"
Fabric Wrapped	N/A	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"	12-48"
Acoustic Tackable	N/A	12-48"	N/A	12-48"	N/A	N/A	N/A	12-48"	N/A	N/A	12-48"	N/A
Micro Perf	N/A	12-44"	N/A									
Markerboard Framed BPG	N/A	12-48"	N/A									
Markerboard Frameless BPG	N/A	12-48"	N/A									

landscape

GL1	Glass - Landscape
MSM	Mid-Split - Monolithic
MS2	Mid-Split - lv1 2
TSM1	Tri-segmented - Monolithic
TS2	Tri-segmented - lv1 2
TS3	Tri-segmented - lv1 3
TWM1	Task Wall - Monolithic
TW2	Task Wall - lv1 2
TL3	Task Wall - lv1 3

Mid-Split Glass

Mid-Split

Tri- Segmented

Task Wall

	G1	MSM	MS2	TWM	TS2	TS3	TWM	TW2	TW3
Glass	$12-96^{\prime \prime}$	N/A	$12-96^{\prime \prime}$	N/A	$12-96^{\prime \prime}$	$12-96^{\prime \prime}$	N/A	$12-96^{\prime \prime}$	$12-96^{\prime \prime}$
Solid	N/A	$12-120^{\prime \prime}$							
Fabric Wrapped	N/A	$12-120^{\prime \prime}$							
Acoustic Tackable	N/A	N/A	$12-120^{\prime \prime}$	N/A	$12-120^{\prime \prime}$	N/A	N/A	$12-120^{\prime \prime}$	N/A
Micro Perf	N/A								
Markerboard Framed BPG	N/A	$12-118^{\prime \prime \prime}$	N/A						
Markerboard Frameless BPG	N/A	$12-96^{\prime \prime}$	N/A						

application guide
 infills, wall fascias fabric finishes

The chart outlines the fabric direction for each fascia.
portrait

landscape

planning with infill, wall fascias widths

The infills widths can effect other products and vice versa. Review the following when deciding infill wall widths.
infills drives beam length

The example below illustrates the chosen infills widths between two posts and their influence on the beam length.
Use this approach to have all infills equal widths between two posts.

Refer to the chart to calculate the beam length based on chosen quantity and the chosen infill widths.

Number of Infills	Infills Combined + Reveal Line	Example - Infill Nominal Width + Reveal	Beam Nominal Length (FJSBK)	Beam Actual Length (FJSBK)
1	A + 3/8"	$40^{\prime \prime}+3 / 8^{\prime \prime}$	$40 _3$	$40-3 / 8^{\prime \prime}$
2	A + B + 4/8"	$30^{\prime \prime}+30^{\prime \prime}+4 / 8^{\prime \prime}$	$60 _4$	$60-1 / 2^{\prime \prime}$
3	$\mathrm{~A}+\mathrm{B}+\mathrm{C}+5 / 8^{\prime \prime}$	$30^{\prime \prime}+30^{\prime \prime}+30^{\prime \prime}+5 / 8^{\prime \prime}$	$90 _5$	$90-5 / 8^{\prime \prime}$
4	$\mathrm{~A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+6 / 8^{\prime \prime}$	$30^{\prime \prime}+30^{\prime \prime}+30^{\prime \prime}+30^{\prime \prime}+6 / 8^{\prime \prime}$	$120 _6$	$120-3 / 4^{\prime \prime}$

beam drives infill widths

The example below illustrates the chosen beam length and its influence on the infill widths.
Use this approach when a specific beam length is required.

Refer to the chart to calculate the quantity and the infill widths based on the chosen beam length.

Beam Nominal Length (FJSBK)	Beam Actual Length (FJSBK)	Number of Infills	Infills Combined + Reveal Line	Example - Infill Nominal Width + Reveal
$40^{\prime \prime}$	$40 _0$	1	$\mathrm{~A}+3 / 8^{\prime \prime}$	$39-5 / 8^{\prime \prime}+3 / 8^{\prime \prime}$
$60^{\prime \prime}$	$60 _0$	2	$\mathrm{~A}+\mathrm{B}+4 / 8^{\prime \prime}$	$29-3 / 4^{\prime \prime}+29-3 / 4^{\prime \prime}+4 / 8^{\prime \prime}$
$90^{\prime \prime}$	$90 _0$	3	$\mathrm{~A}+\mathrm{B}+\mathrm{C}+5 / 8^{\prime \prime}$	$29-3 / 4^{\prime \prime}+29-7 / 8^{\prime \prime}+29-3 / 4^{\prime \prime}+5 / 8^{\prime \prime}$
$120^{\prime \prime}$	$120 _0$	4	$\mathrm{~A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+6 / 8^{\prime \prime}$	$29-7 / 8^{\prime \prime}+29-3 / 4^{\prime \prime}+29-3 / 4^{\prime \prime}+29-7 / 8^{\prime \prime}+3 / 4^{\prime \prime}$

application guide

planning with infill, wall fascias post \& beams

Depending on the chosen configuration the post will need to be selected based on the application

standard post

The following shows the posts and its four sides. Infills can be connected to the Left, Center and Right side of the post.
Refer to the table below to see which combinations are possible .

- Post cover side is marked with the red line to identify post orientation

Walls and glass infills can be placed on the left, right
sides of an inline post.

Walls and glass infills can be placed on the left and
center sides of a two-way left hand post.
Walls and glass infills can be placed on the right and
center sides of a two-way right hand post.

Walls and glass infills can be placed on the left, right
and center sides of a three-way post.

Walls and glass infills can be placed on the left, right

and center sides of a four-way post.

wall infill frame components overview

The frame components are used in conjunction with the various fascia options. Frame components are determined by the fascias elevations chosen and the specific configuration for inside and outside fascias and adjacent fascias.

Horizontal frame components are specified per module to coordinate with the chosen Fascia elevations.

- Horizontal Rail Package (FJSHP)
- Half Horizontal Transition (FJSTH)
- Wall Gasket (FJSWG) (one piece 120")
(module \#2 example shown above)

wall infill frame components overview (continued)

The Vertical Post Package extends from finished floor to the bottom of the beam and is the vertical support for Infills,Walls.

The vertical post has fascias attached to both side of the wall.

Vertical Post Package (FJSVP)

frame kit \& components infill, wall fascias basics

The infill frame kits and components consist of the following components.

Aluminum Fascia Kit (FJFPAK)

- A routing path around for up to four conduit feeds (3/4" diameter)
- Electrical Cutout Style: - Solid
$-42^{\prime \prime}$ Vertical Height
Finishes: Painted

Horizontal Rail Package (FJSHP)

- Horizontal Rails attach to Vertical Posts to provide lateral support
- Standard and/or Functional Rail Options
- Always includes base channel
- Width: $12-120$ " ($1 / 8^{\prime \prime}$ increments)

Wall Gasket (FJSWG)

- Is a light and sound seal between the bottom of the wall system and the finished floor
- Length: 120"(cut to size)
- One per side of a wall run required

Vertical Post Package (FJSVP

- Vertical Posts extend from floor to ceiling to provide vertical structure and hold fascias in place
- Height 92"

Half Horizontal Transition

 (FJSTH)- Half horizontal attaches to the beam to provide fascia support
- Width: 6, 12-120" (1/8" increments)
- Includes fascia clips

Finish Wall End (FJFWE)

- Used to finish partial walls
- Height 92"
- Finishes:
- Painted
- Laminate
- Flintwood

Half Vertical Transition(FJSTV)

- Half vertical attaches to the post provide fascia support
- Height: 92"
- Includes fascia clips

application guide

planning with infill, wall fascias frame components

The number and type of frame components varies depending on the module positioning.

- Half Horizontal Transition (FJSTH) is specified per module and modules positions. Below shows the code and the position, noted with orange text
- Task Wall shown for all examples
- Wall Gasket (FJSWG), one per side of a wall run required. Gasket is 120 " and cut on site, specify an additional gasket per side for wall runs longer than 120 "
- Any module between two modules (one on the left and right) will use the Half Horizontal (FJSTHR)

Infills, Partial Wall - Left/Right Justified (two modules)

application guide

planning with vertical posts

The following illustration shows the vertical post and half vertical transition that is required for modules that have the following fascia datums on the inside and outside.

The following chart can be used for selecting the elevation option of both the Vertical Post Package (FJSVP) and Half Vertical Transition (FJSTV)

Mid-Split + Mid-Split (MS)
Mid-Split + Task Wall (/)

Task Wall + Task Wall (TW)

62 within price \& application guide - January 22, 2024

The chart demonstrates which vertical post package should be selected for each application.

application guide

planning with horizontal posts

Horizontal Rail Packages include the appropriate number of horizontal rails based on the datums selected and one Base Channel.

The following chart illustrates which datums required a horizontal rail

- Minimum one horizontal per panel
- One horizontal per reveal line

Connection clips will need to be removed on the vertical post to connect functional rails. Hardware included with horizontal rail package.

Full

Monolithic

Bi -Segmented

Tri-Segmented

Task Wall

Legend
Standard Rail (S)
Standard Rail (S) or
Functional Rail (F)

The infill wall glass fascias consist of the following components.

Portrait Base Fascia (FJFPB)

- Height: 4"
- Width: $12^{\prime \prime}-48^{\prime \prime}$ (1/8" increments)
- Finish:
- Laminate
- Flintwood
- Select Paint Colors

Portrait Glass Fascia - Single Centered, Square Corner (FJFPGCS)

- Height: 12", 30", 44", 48", 88"
- Width: 12 " $-48^{\prime \prime}$ ($1 / 8^{\prime \prime}$ increments)
- Frame Finish:
- Select Paint Colors
- Glass Type:
- Tempered
- Laminate
- Glass Finish:
- Standard
- Specialty

Landscape Glass Fascia - Single Centered, Square Corner (FJFLGCS)

- Height: $12^{\prime \prime}, 30^{\prime \prime}, 44^{\prime \prime}, 48^{\prime \prime}$
- Width: 12 " $-96^{\prime \prime}$ ($1 / 8^{\text {" }}$ increments)
- Frame Finish:
- Select Paint Colors
- Glass Type:
- Tempered
- Laminate
- Glass Finish:
- Standard
- Specialty

application guide

planning with infill, wall fascias with glass elevations

The following illustrates the locations glass can be combined with walls.

Possible glass locations are shown highlighted in blue and marked G1 or GL1.
portrait

Full

Monolithic

Bi-Segmented

Mid-Split

Tri-Segmented

Task Wall
landscape

Mid-Split Glass

Mid-Split

Tri-Segmented

Task Wall
infill, glass

infill, glass

INFILL, GLASS BASICS 70
PLANNING WITH INFILL, GLASS 72

application guide

infill, glass basics

The infill glass fascias consist of the following components.

Glass Infill - 10mm Thickness (FJHGA)

- 10 mm monolithic glass fascia

Glass Infill - 12mm Thickness (FJHGB)

- 12 mm monolithic glass fascia

Glass Infill Connector Tape (FJHCT)

- Available for 10 mm and 12 mm glass

Glass Infill Connector Clear Plastic (FJHCP)

- Available for 10 mm and 12 mm glass

Activator Kit (FCAK)

- Activator Kit used for glass to glass connectors to promote stronger bond

The infill glass fascias consist of the following components.

Glass Infill Horizontal Ceiling Frame (FJHCF)

- Fixed ceiling frame for single center glass infill
- Lengths: $36^{\prime \prime}, 84^{\prime \prime}, 121^{\prime \prime}$
- Cut to size on site
- Finish: Painted
- Glass Thickness: 10 mm or 12 mm

Glass Infill Wall End (FJHWE)

- Wall end transition for glass infills
- Not to be used against drywall, finished end application only
- Cut to size on site
- Finish: Painted

Glass Infill Horizontal Base Frame (FJHBF)

- Adjustable base frame for single center glass infill
- Lengths: 36", 84", 121"
- Cut to size on site
- Finish: Painted
- Glass Thickness: 10 mm or 12 mm

Glass Infill Wall Start (FJHWS)

- Adjustable wall start for glass infills against a post
- Cut to size on site
- Finish: Painted
- Glass Thickness: 10 mm or 12 mm

Glass Infill to Wall Fascia Transition (FJHTFI)

- Inline transition for glass infills to wall infills
- Cut to size on site
- Finish: Painted
- Glass Thickness: 10 mm or 12 mm

application guide

planning with infill, glass

The following describes the options for placing glass infills between two post.

- Glass Infills consists of the following discrete elements:
- Horizontal Frames (Base and Ceiling) - cut to length on site
- Verticals (Wall Start and Wall Ends)- cut to length on site
- Glass Fascias 10 mm or 12 mm thicknesses
- The following outline the option for placing Glass Infills between two posts
- A continuous wall run can only be broken by a vertical (transition, wall start, wall end, etc.)
- Finished floor to underside of the beam cannot expand more than a total of $1-1 / 4^{\prime \prime}$ over an individual 10 ft wall run ($+3 / 4^{\prime \prime}$ under beam, $+1 / 2^{\prime \prime}$ in floor)
- If a wall run requires adjustment greater than $+1-1 / 4^{\prime \prime}$ for leveling, the $92-1 / 2^{\prime \prime}$ glass needs to be selected for an adjustment range between $+1 / 2^{\prime \prime}-1-3 / 4^{\prime \prime}$
- There can only be one glass fascia height per continuous wall run
- A continuous wall run can only be broken by a vertical (transition, wall start, structural post etc.)
- Separate wall runs can have different nominal heights, if required

Full Wall

Section B-B

Full Wall

Partial Wall - Left Right Justified

[^0]
screens

screens

SCREENS BASICS 76
PLANNING WITH SCREENS 77

application guide

screens basics

Screens consist of the following components.

Full Coverage Three Panels

Partial Coverage Two Panels

Full Coverage Two Panels

Partial Coverage One Panels

application guide

planning with screens (continued)

The following outlines the size range for screens.
full coverage three panel

full coverage two panel

planning with screens (continued)

The following shows two types of patterns offered with the felt screens.

45° Pattern

90° Pattern

The screens are available in $2^{\prime \prime}$ increments from $25^{\prime \prime}$ up to $49^{\prime \prime}$. Below shows the hole pattern placement for each size.

application guide

planning with screens (continued)

The charts below outline the options for configuring the screens and the corresponding number of panels and their width.

The full coverage options must match with a beam of the same size. Each coverage range includes some panel overlap to accommodate all sizes within the range.

Full Coverage Three Panels

Coverage Range(Post to Post)	Panel Width
$70^{\prime \prime}-73-7 / 8^{\prime \prime}$	$37^{\prime \prime}$
$74^{\prime \prime}-77-7 / 8^{\prime \prime}$	$39^{\prime \prime}$
$78^{\prime \prime}-81-7 / 8^{\prime \prime}$	$41^{\prime \prime}$
$82^{\prime \prime}-85-7 / 8^{\prime \prime}$	$43^{\prime \prime}$
$86^{\prime \prime}-89-7 / 8^{\prime \prime}$	$45^{\prime \prime}$
$90^{\prime \prime}-93-7 / 8^{\prime \prime}$	$47^{\prime \prime}$
$94^{\prime \prime}-97-7 / 8^{\prime \prime}$	$49 "$

Full Coverage Two Panels

The partial coverage options do not need to match the beam width, it is recommended to account for a minimum open space as a passageway. In the charts below a minimum recommended beam length accounts for an assumed minimum $32^{\prime \prime}$ passageway opening when the screens are in the fully open position.

Partial Coverage Two Panels

Partial Coverage One Panels

Coverage	Panel Width	Min Recommended Beam Length
$50^{\prime \prime}$	$25^{\prime \prime}$	$82-3 / 8^{\prime \prime}$
$54^{\prime \prime}$	$27^{\prime \prime}$	$86-3 / 8^{\prime \prime}$
$58^{\prime \prime}$	$29^{\prime \prime}$	$90-3 / 8^{\prime \prime}$
$62^{\prime \prime}$	$31 "$	$94-3 / 8^{\prime \prime}$
$66^{\prime \prime}$	$33^{\prime \prime}$	$98-3 / 8^{\prime \prime}$
$70^{\prime \prime}$	$35^{\prime \prime}$	$102-3 / 8^{\prime \prime}$
$74 "$	$37 "$	$106-3 / 8^{\prime \prime}$
$78^{\prime \prime}$	$39 "$	$110-3 / 8^{\prime \prime}$
$82^{\prime \prime}$	$41^{\prime \prime}$	$114-3 / 8^{\prime \prime}$
$86^{\prime \prime}$	$43 "$	$118-3 / 8^{\prime \prime}$
$90^{\prime \prime}$	$45 "$	$122-3 / 8^{\prime \prime}$
$94^{\prime \prime}$	$47^{\prime \prime}$	$126-3 / 8 "$
$98^{\prime \prime}$	$49 "$	$130-3 / 8^{\prime \prime}$

Coverage	Panel Width	Min Recommended Beam Length
$25^{\prime \prime}$	$25^{\prime \prime}$	$67-3 / 8^{\prime \prime}$
$27^{\prime \prime}$	$27^{\prime \prime}$	$67-3 / 8^{\prime *}$
$29^{\prime \prime}$	$29^{\prime \prime}$	$67-3 / 8^{\prime \prime}{ }^{*}$
$31^{\prime \prime}$	$31^{\prime \prime}$	$67-3 / 8^{\prime *}$
$33^{\prime \prime}$	$33^{\prime \prime}$	$67-3 / 8^{\prime \prime}$
$35^{\prime \prime}$	$35^{\prime \prime}$	$67-3 / 8^{\prime \prime}$
$37^{\prime \prime}$	$37^{\prime \prime}$	$69-3 / 8^{\prime \prime}$
$39^{\prime \prime}$	$39^{\prime \prime}$	$71-3 / 8^{\prime \prime}$
$41^{\prime \prime}$	$41^{\prime \prime}$	$73-3 / 8^{\prime \prime}$
$43^{\prime \prime}$	$43 "$	$75-3 / 8^{\prime \prime}$
$45^{\prime \prime}$	$45^{\prime \prime}$	$77-3 / 8^{\prime \prime}$
$47^{\prime \prime}$	$47^{\prime \prime}$	$79-3 / 8^{\prime \prime}$
$49 "$	$49^{\prime \prime}$	$81-3 / 8^{\prime \prime}$

The charts below outlines the placement of the felt panels within the track of each configuration.

Full Coverage Three Panels

Partial Coverage Two Panels

One panel occupies each of the following tracks:

- Outside and Center or
- Inside and Center

Partial Coverage One Panels

Open

Closed

One panel occupies each of the following track:

- Outside or
- Center or
- Inside

worksurfaces

worksurfaces

WORKSURFACE BASICS 84
PLANNING WITH WORKSURFACES 85
WORKSURFACES FINISHES 86
PLANNING WITH WORKSURFACES, POSTS \& BEAMS 87
PLANNING WITH WORKSURFACES \& ELECTRICS 89

application guide

worksurface basics

Worksurfaces consist of the following components.

Worksurface Framework Kit

 (FJTWFK)- Width: 48" - 96" (6" increments)
- Modesty Height:
- Full
- 12" Partial
- Wall Gasket Finish:
- Ebony
- Platinum
- Very White

Fascia Package for Bar Height Worksurface (FJTLFP)

- Width: 48" - 96" (6" increments)
- Modesty Height:
- Full
- 12" Partial
- Electrical Cut Out:
- Single-Sided Center
- Double-Sided Center
- Single-Sided Two Offset
- Double-Sided Two Offset

Bar Height Worksurface (FJTWSF)
-Width: 48" - 96" (6" increments)

- Depth: 24"
- Cutout:

Single-Sided - Centered

- Double-Sided - Centered
- Single-Sided - Two Offset Cut Out
- Double-Sided Two Offset Each Side
- Surface Finish
- Foundation
- Flintwood

Worksurface Ring Grommet (FJTWDG)

- Round
- Finish:
- Platinum

planning with worksurfaces

The following should be considered when planning with worksurfaces.

All dimension are nominal.

12" partial modesty

full modesty

The following chart outlines the module widths and the required widths to be specified with the associated components

- Worksurface module drives Structural Beam Kit (FJSBK) width

Module Width	Worksurface Framework Kit (FJTWFK) Width	Bar Height Worksurface (FJTWSF) Width	Fascia Package (FJTLFP) Width	Structural Beam Kit (FJSBK) Width
$48^{\prime \prime}$	$48-3 / 8^{\prime \prime}$			
$54^{\prime \prime}$	$54-1 / 2^{\prime \prime}$			
$60^{\prime \prime}$	$60-1 / 2^{\prime \prime}$			
$66^{\prime \prime}$	$66-1 / 2^{\prime \prime}$			
$72^{\prime \prime}$	$72-1 / 2^{\prime \prime}$			
$78^{\prime \prime}$	$78-1 / 2^{\prime \prime}$			
$84^{\prime \prime}$	$84-1 / 2^{\prime \prime}$			
$90^{\prime \prime}$	$90-1 / 2^{\prime \prime}$			
$96^{\prime \prime}$	$96-1 / 2^{\prime \prime}$			

application guide

worksurfaces finishes

The following shows two options for modesty panels below the worksurface.

12" partial modesty

full modesty

planning with worksurfaces, posts \& beams

The following shows the placement options for a worksurface in a frame post and beam.

post to post

The maximum dimensional width of a worksurface from post to post is $96-1 / 2^{\prime \prime}$.
For the opposite side beam to be continuous it must equal the dimensional width of the worksurface.
post to auxiliary post

The maximum dimensional width of a worksurface from post to post is $96-1 / 2^{\prime \prime}$.
For the opposite side beam to be continuous it must equal the dimensional width of the worksurface plus the opening width which can be max 44-3/8", plus the post width $4^{\prime \prime}$.
auxiliary post to auxiliary post

For the opposite side beam to be continuous the dimensional maximum width of the worksurface from auxiliary post to auxiliary post is $54-1 / 2^{\prime \prime}$.

application guide

planning with worksurfaces, posts \& beams (continued)

Depending on the chosen configuration the post will need to be selected based on the application.

- Below shows the side a worksurface can be connected to (Left, Center and Right)
- Refer to the table below to see which combinations are possible and the post required for the connection
- Post cover side is marked with the red line to identify post orientation

Structural Post (FJSPS)

Elevation View	Plan View		
	Option 1 Option 2	V	Worksurfaces can be placed on the left or right side of a post. or Worksurfaces can be placed on the center of a post.
	Option 1		Worksurfaces must be placed simultaneously on a left and right hand side of a post when between two worksurfaces. The non-handed cover can be on the inside or outside of the space.
-			Worksurfaces cannot be placed of the cover side of a post.
			Worksurfaces cannot be placed on both a left or right side of a post and the center side of the same post.

planning with worksurfaces \& electrics

The following shows the placement options for outlets in a worksurface.
Applies to partial and full modesty fascias.

Centered Cutout

- Single sided or double sided
- Outlets are always double outlets

Centered outlets always require a minimum of 1 x double power data module (EPDMDFJ) and can be added to both the inside and outside for a total of two.

When adding worksurface cut outs the locations should match the cut out locations in the worksurface fascias. See electrics section for wire routing.

Single-Sided Center Cut Out (N1)

Double-Sided Center Cut Out (11)

Single-Sided Two
Offset Cut Outs (N2)

Double-Sided Two Offset Cut Outs (22) Grommet for hole specified one per hole (FJTWDG).

lighting, electrics \& communications

lighting, electrics \& communications

UNDERSTANDING LIGHTING, ELECTRICS \& COMMUNICATIONS 92
POWER DATA ELECTRICS OVERVIEW 93
ELECTRICS BASICS 94
UNDERSTANDING POWER DATA OUTLETS 95
UNDERSTANDING CONTROLLED RECEPTACLES 97
PLANNING WITH POWER/COMMUNICATION WALLS 98
ELECTRICAL DISTRIBUTION OVERVIEW 101
ELECTRICAL DISTRIBUTION BASICS 102
PLANNING POWER DATA ELECTRICAL DISTRIBUTION 103
PLANNING FOR ELECTRICAL DISTRIBUTION FEED 104
PLANNING FOR ELECTRICAL CEILING FEED 105
PLANNING FOR ELECTRICAL BASE FEED 106
PLANNING FOR ELECTRICAL POST ROUTING 107
PLANNING FOR ELECTRICAL POST \& BEAM ROUTING 108
PLANNING FOR ELECTRICAL FEEDS INFILL WIRE ROUTING 112
DETERMINING HARNESS LENGTH. 114
DETERMINING HARNESS LENGTH WALLS 115
DETERMINING HARNESS LENGTH INFILLS 117
DETERMINING HARNESS LENGTH POST \& BEAM 118
DETERMINING HARNESS LENGTH WORKSURFACES 119
LIGHTING BASICS 121
PLANNING WITH WALL-MOUNTED LIGHTS 122
PLANNING WITH LIGHT SWITCHES 125
SPECIFYING WITHIN ELECTRICS \& COMMUNICATIONS. 126
DETERMINING ELECTRICS \& COMMUNICATIONS REQUIREMENTS 127
ELECTRICAL TYPICALS 128

application guide

understanding lighting, electrics \& communications

There are two methods of supplying power and communications in WithIn, each method functions differently. The following chart will help you select the appropriate solution.

Vertical Outlets (15" AFF)

Power Data Electrics

Horizontal Outlets (35" AFF)

Outlets

- Screwless face plates
- Self contained unit for an homogeneous, clean look
- Data and power in one box
- Single face plate for entire box
- Data jacks/faceplates are not included on power data modules
- Wire systems 4B, 5D, 7G, 8T, 8K
- 120 volts -15 and 20 amp

Lights ($62^{\prime \prime}$ or $80^{\prime \prime}$ AFF)
Light Switch (42" AFF recommended)

Lights

- Light are hardwire only and always routed interdependently of outlet and communications

Light Switch

- Light switches are always hardwired and independent of which electrical system is chosen
- Light switches are field installed on solid or fabric wrapped fascias and are cut on-site
- Light switches are supplied with $20^{\prime}-0^{\prime \prime}$ cable and must be connected to building supply by a qualified electrician
- Black or White options available
- Wire system - standard circuit, isolated circuit
- 120 volts- 15 and 20 amp

power data electrics overview

WithIn Power Data electrics allow for maximum flexibility and simple reconfiguration

(1) Power is provided to WithIn walls by a building junction box provided by others
(2) Power Data Starter Cable (EPDSCFJ) - Connects to the building's junction box (by a certified electrician). Cables are fed from the ceiling or from access floors though cut outs in the ceiling or base channels to the Power Data Modules
3 Four-Way Splitters (EPDDBFJ) - Connects to the Starter Cable and allows daisy chaining as well as back to back
4 Power Data Connecting Harness (EPDCHFJ) can be specified to link modules or passing through panels without receptacles
5 Modules can be mounted back to back to provide power to adjacent offices
6 Reaching other power locations can be accomplished by adding an In-line connector (EPDICFJ) to lengthen the infeed with a power harness when is end of run, single sided

application guide

electrics basics

Power Data outlets consist of the following components.

Power Data Horizontal Module Communication (EPDHCFJ)

Power Data Vertical Module - Single (EPDMSFJ)

Power Data Vertical Module - Double (EPDMDFJ)

Power Data Vertical Module Communication (EPDMCFJ)

Power Data Horizontal Module - Single (EPDHSFJ)

Power Data Horizontal Module - Double (EPDHDFJ)

understanding power data outlets

Power data receptacles are available in $15 \mathrm{amp}, 20 \mathrm{amp}$ and with USB options. Please see chart for possible combinations.

- Control receptacles combined with Power Data circuits allows plug loads control for reducing energy consumption. Ref ANSI/ASHRAE/IES Standard 90.1, California Energy Commission (CEC) Title 24, Part 6.
- USB receptacles are only available in Circuit 1
- USB receptacles cannot be on a controlled circuit

Power Receptacles							
Receptacle outlets	15 amp			20 amp			Data Openings
				(ed		(\square
	Standard Outlet (S)	Controlled Outlet (D)	$\begin{aligned} & \text { USB (A+C)* } \\ & \text { Outlet (U) } \end{aligned}$	Standard Outlet (T)	Controlled Outlet (E)	$\begin{aligned} & \text { USB }(\mathrm{A}+\mathrm{C})^{*} \\ & \text { Outlet (W) } \end{aligned}$	Data Opening (0)

*USB ($\mathrm{A}+\mathrm{C}$)
Cable compatibility: USB C
USB 2.0
USB 3.0
USB charger provides a total combined output of up to 25 Watts (5 Amps).
Maximum output on the USB-A port is 10 Watts (2 Amps).
Output voltage is fixed at 5 Volts DC.
faceplate opening dimensions for data

Data opening accepts modular furniture faceplates (supplied by others)

application guide

understanding power data outlets (continued)

The following chart helps visualize the differences in sizing for Teknion's Power Data electrical systems for WithIn.

| Description | Where Used | Width $=4.196$ inches $(107 \mathrm{~mm})$
 Height 5.514 inches $(140 \mathrm{~mm})$
 Thickness $=0.21$ inches $(5.40 \mathrm{~mm})$ |
| :--- | :--- | :--- | :--- |
| Single excluding snap tabs
 Vertical Power Data Module | | |
| EPDHCFJ | | |
| EPDHSFJ | | |
| EPDMCFJ | | |
| EPDMSFJ | | |

understanding controlled receptacles

WithIn based solution for the controlling function that addresses the ASHRAE/Title 24 energy conservation requirements.

Power Data electrics offers standard and controlled power receptacles for Wall Infills. Controlled receptacles are any receptacles connected to an automatic shut-off controller.

- Shut-off controllers turn electrical power on and off in those controlled receptacles to:
- Save electrical consumption,
- Reduce carbon footprint,
- Comply with energy codes, and
- To earn points for LEED rewards/certifications
- When devices such as monitors, televisions, or task lights, are left ON or plugged in when not in use, they still consume energy. Power controlled receptacles will automatically switch off to minimize wasted energy. Power can be switched off by means of an occupancy sensor, timer or other method as chosen by the site electrician or contractor. This allows for ASHRAE/Title 24 compliance
- Receptacles are typically controlled by circuit in a modular power distribution system. This means that all receptacles on the same circuit will be controlled together. For example, if circuit \#2 is connected to a sensor placed in the ceiling, then all receptacles on circuit \#2 powered from the same feed harness will switch on and off together. Even if they are in separate rooms. This is important to remember/understand when specifying or planning the electrical layout
- Controlled receptacles are simple to identify. They are marked with the universally recognized power symbol and the word "controlled". This permanent marking allows users to differentiate them from standard receptacles and inform employees, guest users and others which receptacles have constant power availability and which receptacles may have power switched off at predetermined times or occupancy conditions
- Identifying which outlets automatically shut-off and which remain constantly powered is important, so the correct equipment and devices may be plugged into the appropriate outlet

Shut-off controlled Outlet (Controlled receptacle):
Plug in:

- Displays/monitors
- Task lights
- Space heaters/Fans
- Printers
- Televisions
- Water fountains

application guide

planning with power/communication walls

Electrics and communications receptacles can be specified at two levels: $15^{\prime \prime}$ height and worksurface height 35 " depending on type specified.

- Fascia cut outs are required for accessing power and communications
- Cut out locations vary depending on the application type:
- All cut outs are located right of center-line on the front of the Fascia - this allows for electrics and communications to be specified on both inner and outer elevations of the same wall module
- Above worksurface are always oriented horizontally
- Fascia cut out locations are available in the following finishes: Solid and Fabric Wrapped
- 4" base fascias cannot accept cut outs but wires can be routed through them in some applications

35" - Above worksurfaces Height

- Horizontal orientation only
- Power Data only

15" - Above Finish Floor Height

- Vertical orientation only
- Power Data only

Depending on the application of furniture one of the two elevations may be more suitable then the other.

application guide

planning with power/communication walls (continued)

Wall modules that require electrics or communications are specified by ordering Fascias that come complete with the available cutout options. Refer to the chart below to see the available cutout options for each fascia.

The chart below outlines the styles of openings available for Fascias that accept electrical cut outs.
Each letter represents a different cut out style.

	Image Reference		Application Fascia		Cut Out Descriptions	Width Range Portrait	Width Range Landscape
No need for electrical access	1L		All	IL	No Cut Outs	12"-48"	12"-120"
15" AFF Height	SL	DL	$\begin{aligned} & \text { MN } \\ & \text { BSM } \end{aligned}$		15" AFF Height Vertical Cut out for Single Module	13-1/2"-48"	13-1/2" - 120"
			TEM TWM	DL	15" AFF Height Vertical Cut out for Double Module	17-1/2"-48"	17-1/2" - 120"
35" AFF Height	回	뚱	MN BSM	FJ	35" AFF Height Horizontal Cut out for Single Module	17"-48"	17" - 120"
			$\begin{aligned} & \text { TS2 } \\ & \text { TW2 } \end{aligned}$	GJ	35" AFF Height Horizontal Cut out for Double Module	27"-48"	27" - 120"
Combined 35" AFF Height \& 15" AFF Height	LJ	MJ	MN BSM MSM	LJ	Combination: 35" AFF (Worksurface Height) Horizontal Cut Out for Single Module and 15" AFF Height Vertical Cut Out for Double Module	17"-48"	17" - 120"
				MJ	Combination: 35" AFF (Worksurface Height) Horizontal Cut Out for Double Module and 15" AFF Height Vertical Cut Out for Double Module	27"-48"	27" - 120"

electrical distribution overview

Power data distribution electrics consist of the following components that allow WithIn spaces to include power.

- Power data components can be connected in series (daisy chained) and are non-directional
- Back-to-back installation of electrics and communications is possible because electrical box mounting if offset on the fascia
- All components must be specified from same wire system - systems available: 4B, 5D, 7G, 8 T and 8 K
- Certain Fascias are available with cut outs to match each Power Data Module type. See Infills section for more detail
- Power Data Components can not be connected with hardwired components
- Electrical connections to the building power supply must be done on-site by a certified electrician
- Maximum number of Power Data Modules chained by one feed is limited by electrical loads. This will depend on number of receptacles per Power Module, what equipment will be plugged in to those receptacles, the number of circuits, and the local code's requirements. For convenience, limit to four rooms/offices. Please contact your electrical contractor for further assessment

(1) Power Data Starter Cable (EPDSCFJ)
(2) Power Pole (EPQFJ)
(3) Power Data Four-Way Splitter (EPDDBFJ)

4 Power Data Connecting Harness (EPDCHFJ)
5 Power Data In-line Connector (EPDICFJ)
6 Power Data Vertical Module - Double (EPDMDFJ)

electrical distribution basics

Power Data distribution consist of the following components.

Power Data Starter Cable (EPDSCFJ)

- Feeds building power from ceiling down to the Power Data Modules in a panel, or from base floor up to the modules
- Always connects to a junction box (provided by electrician)
- Includes an In-line Connector
- Lengths: 18", 120", 240"

Power Data Connecting Harness (EPDCHFJ)

- Routes power between Power Data Modules and is non directional
- Also connects to Starter Cables for routing power
- Length: 48", 72 ", 96 ", 120 " and $1444^{\prime \prime}$

Power Data Four-Way Splitter (EPDDBFJ)

- Distributes power in two or three directions
- Routes power between modules, harnesses, and/or starter cables
- Includes two port covers

Power Pole (EPQFJ)

- Houses electrical connecting harnesses from ceiling
- Height: 42 " or 56"
- Pole, ceiling sleeve and beam sleeve offer separate finish options

Power Data Inline Connector (EPDICFJ)

- Routes power between modules, harnesses, and/or starter cables
harness

An In-line Connector or a Four-Way Splitter should be specified to connect them.
Harnesses cannot be linked together.
power data modules

Power data modules cannot be linked together.

A Four-Way Splitter should be specified to connect them.

application guide

planning for electrical distribution feed

There are two types of feeds that can be used to supply power to a WithIn layout. Ceiling feeds fed from the base building through the power pole or base feeds feed up directly through the bottom of the wall.

Ceiling Feed

Up to four cables can feed through the power pole to bring cables into the beam of the WithIn frame and distributed as needed.

Base Feed
Cables can feed up into a wall though a floor core or floor junction box. The feed must align directly under the span of the 4 " wall.

planning for electrical ceiling feed

The following describes the allowable options and locations for ceiling feeds.

The Ceiling Power Pole (EPQFJ) can uses with or without the ceiling sleeve. The ceiling sleeve is used when penetrating through drop ceiling or similar. The sleeve can be removed for feeds in open concept spaces.

Plan View

The Ceiling Feed Power Pole (EPQFJ) can me mounted a minimum distance of $17-1 / 2^{\prime \prime}$ to the centerline from any outside edge of a post.

application guide

planning for electrical base feed

The following describes the allowable options and locations for base feeds.

Electrical feeds can be fed from the floor in the middle of 4 " walls, in between non-glass infills only.
Horizontal rails include pre cut holes on both ends so they can be bypassed with electrical cables.

If multiple feeds from the floor are to be used they should be spaced a minimum of 12 ".
Holes do not come pre cut into the base channel.
Electrical connections should be coordinated with an electrician prior to install.

planning for electrical post routing

The following describes the allowable options for electrical routing cutout options for posts.

Electrical Cut Out options:
$\begin{array}{ll}\text { RIGHT } & \text { none, } 25^{\prime \prime} \text { or } 35^{\prime \prime} \text { cut out } \\ \text { CENTER } & \text { none, } 25^{\prime \prime} \text { or } 35^{\prime \prime} \text { cut out } \\ \text { LEFT } & \text { none, } 25^{\prime \prime} \text { or } 35^{\prime \prime} \text { cut out }\end{array}$

- Worksurface by default includes the $35^{\prime \prime}$ electrical cut out based on the selection of Worksurface connection (right, center, or left)
- Only one additional electrical cut out option per side is allowed, the included worksurface cut out option does not count towards the one per side electrical cut out. For example, an additional electrical cutout at $25^{\prime \prime}$ and $35^{\prime \prime}$ (cutout for worksurface) can be on one side of a post (left/right or center) and only applies when a worksurface is present
- If no worksurface is present there is only the option to have a one cutout (left/right/ or centered)

Note the posts can only be used as pass through cavities for cables and no inline connectors (EPDICFJ) or FourWay Splitters (EPDDBFJ) can be connected inside the post.

application guide

planning for electrical post \& beam routing

The following outlines the options for electrical distribution through a ceiling post.

Image Reference | Descriptions | Quantity Cables |
| :---: | :---: |

The following outlines the options for electrical distribution through a beam.

	Image Reference	Descriptions	Quantity Cables
$\sqrt{ }$		Beam - Straight	5 x Electrical Cables
		Beam - Straight with two Inline Connectors (must be offset horizontally in beam by $\min 12$ ")	$4 \times$ Electrical Cables 2 x Inline Connectors
V		Beam - Straight with FourWay Splitter option	$3 \times$ Electrical Cables $1 \times$ Four-Way Splitter
		Beam to Beam - 90° turn	2 x Electrical Cables
V		Beam to Beam - Inline	2 x Electrical Cables

application guide

planning for electrical post $\&$ beam routing (continued)

The following outlines the options for electrical distribution through a post.

	Image Reference	Descriptions	Quantity Cables
$\sqrt{ }$		Two Beam to Post -90° Exit - one $25^{\prime \prime}$ AFF and - one $35^{\prime \prime}$ AFF One Post - Inline Pass Thru - one $25^{\prime \prime}$ AFF or - one $35^{\prime \prime}$ AFF	$3 \times$ Power Data Cables
$\sqrt{ }$		One Beam to Post -90° Exit - one $25^{\prime \prime}$ or - one $35^{\prime \prime}$ Two Post - Inline Pass Thru - two $25^{\prime \prime}$ or - two 35" (must be opposite of Beam to Post location)	$3 \times$ Power Data Cables
V		One Post - 90° Jog Turn - one $25^{\prime \prime}$ AFF or - one $35^{\prime \prime}$ AFF One Post - Inline Pass Thru - one 25 " AFF or - one $35^{\prime \prime}$ AFF	2 x Power Data Cables
		One Beam to Post - 90° Exit - one $25^{\prime \prime}$ AFF or - one $35^{\prime \prime}$ AFF One Post - 90° Jog Turn - one $25^{\prime \prime}$ AFF or - one $35^{\prime \prime}$ AFF	n / a

The following outlines the options for electrical distribution through a post for hardwiring.

| Image Reference | Descriptions | Quantity Cables |
| :---: | :---: | :---: | :---: |
| | Beam to Wall -90° Exit | 1 x Hardwire
 (set back $12^{\prime \prime}$ minimum from post +
 beam connection point) |

application guide

planning for electrical feeds infill wire routing

The following outlines the options for electrical distribution through walls.

- Infill vertical posts have 3-1/2" high openings at $12^{\prime \prime}$ and $25^{\prime \prime}$ AFF
- Cut outs on the horizontals are located 3" from the vertical reveal line, to the center of the cut out

In-line through
two vertical post
Thrower path

planning for electrical feeds infill wire routing
 (continued)

The following should be taken into consideration when planning power distribution around infills walls and glass.
planning with glass fascias

Power data components cannot be routed through fascia that are glass.

Power data components can be routed through a 4" base Fascia when glass is above.

application guide

determining harness length

The following outlines the harness length required for connecting Power Data modules.

It is important to include In-line Connectors and Four-Way Splitters to connect Power Data Modules.
All Power Data Modules have 18" long conduits.

Add the following applicable length then use the harness length matrix to order harness product(s):

Infills:

1) $1 / 2$ the wall segment width on the starting Power Data Module
2) $1 / 2$ the wall segment width on the destination Power Data Module
3) One full wall segment width on any pass-thru walls
4) 4 " when passing through post at the same elevations ($35^{\prime \prime} \mathrm{AFF}$) or $14^{\prime \prime}$ when passing through post at different elevation ($25^{\prime \prime} \mathrm{AFF}$ to $35^{\prime \prime}$ AFF)

Worksurfaces:

1) $1 / 2$ the workspace length for centered outlets or 9 " for offset outlet
2) $61^{\prime \prime}$ for through post
3) $8^{\prime \prime}$ min to in-line splitter or $1 / 2$ beam length to Four-Way Splitter
harness length matrix

Calculated Length	Product Combination to Order
$0 " \text { to } 47 "$	EPDCHFJ_048
$48 " \text { to } 71 "$	EPDCHFJ_072
72 " to 95 "	EPDCHFJ_096
$96^{\prime \prime}$ to $119^{\prime \prime}$	EPDCHFJ_120
$120^{\prime \prime} \text { to } 143 "$	EPDCHFJ_144
$144 " \text { to } 167^{\prime \prime}$	EPDCHFJ_120, EPDICFJ, EPDCHFJ_048
$168^{\prime \prime}$ to 191"	EPDCHFJ_120, EPDICFJ, EPDCHFJ_072
$192 " \text { to } 215^{\prime \prime}$	EPDCHFJ_120, EPDICFJ, EPDCHFJ_096
$216^{\prime \prime}$ to 239"	EPDCHFJ_120, EPDICFJ, EPDCHFJ_120
240 " to 263"	EPDCHFJ_120, EPDICFJ, EPDCHFJ_144
$264 "$ to 287"	EPDCHFJ_144, EPDICFJ, EPDCHFJ_144

determining harness length walls

The following examples will further explain these rules

Adjacent Panels with Power Data Modules at the same

 height

_ _ is a placeholder in code for the chosen wire system.

Panels adjacent to a Post Data Modules at the same height

$\begin{aligned} & \text { Example } \\ & \begin{array}{l}\text { Harness } \\ \text { calculation: }\end{array} \\ & \underbrace{\frac{36^{\prime \prime}}{2}}_{\text {A }}\end{aligned}+4^{\prime \prime}+\underbrace{\frac{36^{\prime \prime}}{2}}_{\text {B }}=\underbrace{40^{\prime \prime} \rightarrow}_{\begin{array}{c}\text { calculated } \\ \text { length }\end{array}} \underbrace{\mathrm{EPDCHFJ}_{--} 48}_{\begin{array}{c}\text { product } \\ \text { to order }\end{array}}$ _ _ is a placeholder in code for the chosen wire system.

Passing through more than one panel at the same height

_ - is a placeholder in code for the chosen wire system.

Passing through more than one panel when dropping and rising through the base

$\begin{aligned} & \text { Example } \\ & \begin{array}{l}\text { Calculations }\end{array}\end{aligned} \underbrace{\frac{36^{\prime \prime}}{2}}_{\text {A }}+\underbrace{36^{\prime \prime *}}_{\begin{array}{c}\text { rise/ } \\ \text { drop }\end{array}}+\underbrace{\frac{36^{\prime \prime}}{2}}_{\text {B }}+\underbrace{36^{\prime \prime}=}_{\text {C } \begin{array}{c}\text { calculated } \\ \text { length }\end{array}} \underbrace{72^{\prime \prime}}_{\begin{array}{c}\text { product } \\ \text { to order }\end{array}} \rightarrow$ EPDCHFJ $_{--120}$

When passing through unpowered fascias with obstructions such as glass panels, a change is necessary to route power at base.
_- is a placeholder in code for the chosen wire system.

* Outlets at 15" AFF shown. Add 20" for each outlet at 35 " AFF

application guide

determining harness length walls (continued)

Panels adjacent to a post with Power Data Modules at various heights

_ _ is a placeholder in code for the chosen wire system.

determining harness length infills

The following examples will further explain these rules

Back-to-back

Monolithic Wall example shown
Back to back do not require harnesses to connect them together.

Connecting at $35^{\prime \prime}$ AFF with one at $15^{\prime \prime}$ AFF on the same fascia

Monolithic Wall example shown

Connecting three or four in the same fascia

Monolithic Wall example shown

When connecting three or four in a single fascia, such as the case of back-to-back situation, a 48 harness and two four-way splitters are required.

Connecting in a tri-segmented or task wall

When connecting power data modules at 35"AFF with one at $15^{\prime \prime}$ AFF on another fascia in the same wall module, a harness equal to the length of the fascias (dimension $x^{\prime \prime}$) is required along the 1 x four-way splitter and 1 x inline connector.
When connecting three or four modules in a single panel 2 x four-way splitters are required.

application guide

determining harness length post \& beam

The following examples will further explain these rules.

Beam Inline Connector to Ceiling Feed - Example 1

Harness connector must be a minimum distance of 8 " from corner post.
Depending on site condition more slack for hardwire may be required.
_ _ is a placeholder in code for the chosen wire system.

Beam Four-Way Splitter to Ceiling Feed - Example 1

Depending on site condition more slack for hardwire may be required.
\qquad _ is a placeholder in code for the chosen wire system.

Beam Four-Way Splitter to Ceiling Feed - Example 2
 $$
1002-1
$$

Depending on site condition more slack for hardwire may be required.
_ _ is a placeholder in code for the chosen wire system.

required.
_ _ is a placeholder in code for the chosen wire system.

Harness connector must be a minimum distance of 8 " from corner post.
Depending on site condition more slack for hardwire may be

determining harness length worksurfaces

The following examples will further explain these rules

Centered Worksurface Outlet to Beam Inline Connector

Harness connector must be a minimum distance of 8" from corner post (Dimension C).
\qquad is a placeholder in code for the chosen wire system.

Offset Worksurface Outlet to Beam Inline Connector

Harness connector must be a minimum distance of 8 " from corner post (Dimension C).
_ _ is a placeholder in code for the chosen wire system.

Centered Worksurface Outlet to Beam Four-Way Splitter

Example
$\begin{aligned} & \text { Harness } \\ & \text { calculation: }\end{aligned} \underbrace{\frac{96^{\prime \prime}}{2}}_{\begin{array}{c}\mathrm{A} \\ \text { nominal } \\ \text { worksurface } \\ \text { width }\end{array}}+\underbrace{71^{\prime \prime}}_{\mathrm{B}}+\underbrace{\frac{40 "}{2}}_{\begin{array}{c}\mathrm{C} \\ \text { beam } \\ \text { length }\end{array}}=\underbrace{139 "}_{\begin{array}{c}\text { calculated } \\ \text { length }\end{array}} \rightarrow \mathrm{EPDCHFJ}_{--144}^{\mathrm{EPD}_{\text {product }}}$ to order
Four-Way Splitter must be centered in Beam. _ _ is a placeholder in code for the chosen wire system.

Offset Worksurface Outlet to Four-Way Splitter

Example
$\begin{aligned} & \text { Harness } \\ & \text { calculation }\end{aligned} \underbrace{\prime \prime}+\underbrace{71^{\prime \prime}}_{\mathrm{B}}+\underbrace{\frac{120^{\prime \prime}}{2}}_{\begin{array}{c}\mathrm{C} \\ \text { beam } \\ \text { length }\end{array}}=\underbrace{140 "} \rightarrow \mathrm{EPDCHFJ}_{--144}^{\text {calculated }} \begin{aligned} & \text { length }\end{aligned}$$\underbrace{}_{\begin{array}{c}\text { product } \\ \text { to order }\end{array}}$

Four-Way Splitter must be centered in Beam.
_ _ is a placeholder in code for the chosen wire system.

application guide determining harness length worksurfaces (continued)

Centered Worksurface Outlet to Beam Inline Four-Way Splitter

$\begin{aligned} & \text { Example } \\ & \text { Harness } \\ & \text { calculation: }\end{aligned} \underbrace{\frac{96^{\prime \prime}}{2}}_{\begin{array}{c}\text { A } \\ \text { nominal } \\ \text { worksurface } \\ \text { width }\end{array}}+\underbrace{71^{\prime \prime}}_{\text {B }}+\underbrace{\frac{144 "}{2}}_{\begin{array}{c}\mathrm{C} \\ \text { beam } \\ \text { length }\end{array}}=\underbrace{191 "}_{\begin{array}{c}\text { calculated } \\ \text { length }\end{array}} \rightarrow \underbrace{\text { EPDCHFJ }}_{\begin{array}{c}\text { product } \\ \text { to order }\end{array}}-144$
Harness connector must be a minimum distance of 8 " from corner post (Dimension C).
Four-Way Splitter must be centered in beam.
_ _ is a placeholder in code for the chosen wire system.

Offset Worksurface Outlet to Offset Worksurface Outlet

Four-Way Splitter must be centered in Beam.
_ _ is a placeholder in code for the chosen wire system.

Lighting consist of the following components.

Light Switch (ELSFJ)

- Allows for user control of individual office ambient light
- Can be installed on solid fascias
- Color: Black or White
- Amps: 15 or 20
- Supplied with 20^{\prime} cable

Wall-Mounted Light (ELWMLFJ)

- Can be mounted to either 62" or $80^{\prime \prime}$ horizontal datum using a Functional Rail
- Available 4" deep x $36^{\prime \prime}-96^{\prime \prime}$ long in $1 / 8^{\prime \prime}$ nominal increments
- Select finishes available include: - Paint: Foundation, Mica - Clear Anodized

Light Power Feed (ELPFFJ)

- Harness can only be used to power one Task Light
- Available in 120", 180 " and 240" lengths

Landscape Light Wire Management (ELWMGFJ)

- Used to retain a low voltage wire from the task light power feed
- Available in $36^{\prime \prime}, 96^{\prime \prime}$ and 156" lengths

application guide

planning with wall-mounted lights

The following should be considered when planning with Landscape Wall-Mounted Lights.

The Wall-Mounted Light is available on either the $62^{\prime \prime}$ or $80^{\prime \prime}$ datums.

placement horizontally on a wall

- Task Light can be installed on the Functional Rail in increments in $1 / 8^{\prime \prime}$ increments along the horizontal reveal at 62 " or $80^{\prime \prime}$ AFF
- The light's nominal width must be equal to or less than the nominal width of the fascia.

Wire shown passing through post at $35^{\prime \prime} \mathrm{AFF}$ (specified in post FJSPK)

Wire shown passing through beam (drilled on site)

placement in a corner

- When planning two lights in a corner wall module the adjacent Light must be specified to be a minimum of 4-1/8" from the edge of the wall module to accommodate the lights depth as well as a $1 / 8^{\prime \prime}$ gap

planning with wall-mounted lights (continued)

The following should be considered when planning with Landscape Wall-Mounted Lights.

The Infill Mounted Light can be mounted in two different applications; task and ambient.

Task Light

- Aims downward, casting direct light onto a workspace, markerboard or other fascia below

Ambient Light

- Aims upward, reflecting ambient light off a ceiling and upper fascia
- Functional Rail is mounted upside down for the ambient application

When Infill Mounted Lights are planned back-to-back they must be specified as the same application on both sides of the wall.

Task and Task

Light Beam
Light Beam

Task and Ambient

\square

application guide

planning with wall-mounted lights (continued)

The following should be considered when planning with Landscape Wall-Mounted Lights.

- Handedness for both task and ambient applications is determined by the location of the wire exit when the user is facing the wall
- When specifying a Light with a Touch Sensitive Switch, the switch will be located on the same side of the light as the wire exit
- When planning a for a Light it should it be noted that the cables run along the horizontal and vertical fascia reveals before entering the wall before entering the floor plane or beam
- Cables in the reveal can be managed with Light Wire Management (ELWMGFJ)

- A Wall-Mounted Light can only be planned with one light per fascia module. If two fascia modules are side-by-side a light can be specified on each module but they cannot share the same vertical reveal for wire management
- Lights cannot span across a vertical reveal

planning with light switches

A light switch is available for WithIn to allow user control of ambient lighting

- Light switches (ELSFJ) allow for light control on fascias and are always hardwired and independent of which electrical system is chosen
- Light switched are field installed on solid or fabric wrapped fascias and are cut on site
- Light switched are supplied with $20^{\prime}-0$ " cable and must be connected to building supply by a qualified electrician
- Black and White options available
- Each Wall Mounted Light (ELWMLFJ) must be supplied with 1x Light Power Feed (ELPFFJ) per light
- Alternatively the Wall Mounted Light can be controlled by a touch switch on the right or left side of the light

Light Switch (ELSFJ)

- Allows for user control of individual office ambient light
- Can be installed on solid fascias
- Is recommended to locate the cut out 42 " above finished floor to the center-line of the light switch

Power data modules cannot be linked together with light switches.
Light switches are pre-wired with a $20^{\prime}-0^{\prime \prime}$ cable and must be connected to building supply by a qualified electrician.

application guide

specifying within electrics \& communications

The following steps should be followed when specifying electrics.

- The inside and outside elevations of one wall module or worksurface can both be installed with Receptacle and/or Communications Modules
- Back-to-back installation of electrics and communications is possible due to offset mounting on Fascias

specifying method

step 1:
Determine Fascia configuration and level of cut out.
When power and/or communications is required, WithIn Fascias must be specified with corresponding cut outs. Non-powered Fascias can be retrofitted with electrics and communications by ordering a single new Fascia with appropriate cut out(s) and required electrical components.

- All cut outs are located right of center-line on the front of the Fascia so electrics and communications can be specified on both inner and outer elevations of the same wall module
- At worksurface height $35^{\prime \prime}$, cut outs are always oriented horizontally. At $15^{\prime \prime}$ height, cut outs are always oriented vertically
- Worksurface outlets are also offset to accommodate back to back applications

step 2:
Order appropriate Power and Communications electrical modules. The total number should match the total number of cut outs specified on Fascias.

determining electrics $\&$ communications requirements

The following steps should be followed when determining electrical requirements.

- The distribution of power is the responsibility of the electrical contractor
- The number of power outlets and voice/data jacks per workspace should be determined by end-user requirements and approved by the electrical contractor
- Voice/data jack/faceplates are supplied by the cable contractor
- Check amperage of specific equipment that will be used. Amperage used below are for sample purposes only.

step 1:

List all office equipment and lighting requirements for each work space with appropriate amperage loads. Calculate total amperage required for each work space. Within receptacles are standard 120 volt, 15 or 20 amps .220 volt equipment should be assigned to an alternative electrical distribution system.

step 2:

Determine the number and location of Receptacle and Communications Modules or Power Boxes needed in each workspace. Some equipment (e.g. computers) may require an isolated circuit and this should be specified at this stage.

step 3:

Balance the electrical load by assigning equipment to specific circuits. It is necessary to know the building's circuit capacity to do this. Also check local code requirements so that the maximum number of receptacles per circuit is not exceeded.

Space Number	Requirement	Amps	Module Required	Type of Circuit	Circuit
1	Computer Lamp Convenience Outlet Total Amp \#1	$\begin{aligned} & 4.00 \\ & 1.00 \\ & 4.00 \\ & 9 \mathbf{~ a m p s} \end{aligned}$	Duplex Receptacle Duplex Receptacle Duplex Receptacle	Standard, $120 \mathrm{~V}, 15 \mathrm{amp}$ Standard, $120 \mathrm{~V}, 15 \mathrm{amp}$ Standard, $120 \mathrm{~V}, 15 \mathrm{amp}$	Power Data Hardwire Power Data
2	Convenience Outlet Lamp Total Amp \#2	$\begin{aligned} & 4.00 \\ & 1.00 \\ & \mathbf{5} \mathbf{~ a m p s} \end{aligned}$	Duplex Receptacle Duplex Receptacle	Isolated Ground or Standard, $120 \mathrm{~V}, 15 \mathrm{amp}$ Standard, $120 \mathrm{~V}, 15 \mathrm{amp}$	Power Data Hardwire
	Total Amperage	14 amps			

step 4:

Determine the number of voice and data jacks required for each workspace. Communication jacks, faceplates and cables are supplied by the cabling contractor.

step 5:

Translate electrics and communications requirements into appropriate WithIn product.

application guide electrical typicals

typical 01

teknion

www.teknion.com

CAN/US/INT OI-22
(C) Teknion 2024
${ }^{\circ}$, ${ }^{\mathrm{TM}}$ trade marks of Teknion Corporation and/or its subsidiaries or licensed to it. Patents may be pending.

Some products may not be available in all markets. Contact your local Teknion Representative for availability.

[^0]: Partial Wall - Centered

